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The Fokker-Planck equation for the probability f�r , t� to find a random walker at position r at time t is
derived for the case that the probability to make jumps depends nonlinearly on f�r , t�. The result is a gener-
alized form of the classical Fokker-Planck equation where the effects of drift, due to a violation of detailed
balance, and of external fields are also considered. It is shown that in the absence of drift and external fields a
scaling solution, describing anomalous diffusion, is possible only if the nonlinearity in the jump probability is
of the power law type ��f��r , t��, in which case the generalized Fokker-Planck equation reduces to the porous
media equation. Monte Carlo simulations are shown to confirm the theoretical results.

DOI: 10.1103/PhysRevE.77.051103 PACS number�s�: 05.40.Fb, 05.60.�k, 05.10.Gg

I. INTRODUCTION

Random walks are typically characterized by the prob-
ability to find a walker at some position r at some time t,
f�r , t�. This could equally well be the concentration of walk-
ers at a given space-time location in the event that there is an
ensemble of independent walkers. In the classical case of an
unbiased random walk, it was first shown by Einstein that at
length and time scales large compared to the typical step size
and the time between steps, respectively, the distribution sat-
isfies the classical diffusion equation

�

�t
f�r,t� = D

�2

�r2 f�r,t� , �1�

with a diffusion constant D and that the diffusion constant
can be expressed in terms of the microscopic dynamics of the
problem, namely, the probability for the walker to take a step
of given length and the time between steps �1�. It is obvious
by inspection that the diffusion equation admits of normal-
ized scaling solutions of the form f�r , t�= t−1/2�(�r−r0�2 / t),
which immediately implies typical diffusive scaling of the
second moment, ��r�t�−r0�2�=2Dt, which is the Einstein re-
lation. However, there are many systems observed in nature
where it seems natural to use the language of diffusion, but
for which the mean-squared displacement scales as some-
thing other than linearly with time. In order to describe such
systems, the functional form of Eq. �1� is often generalized
so as to allow for other types of scalings. Two popular meth-
ods are �i� the introduction of fractional time and/or space
derivatives giving the fractional Fokker Planck equation
�FFPE� �2–6� and �ii� replacement of f�r , t� on the right by
f��r , t�, giving the porous media equation �PME� �7–9�. The
FFPE can be understood as the equation of motion of the
probability density of the continuum limit of a continuous
time random walk in which the waiting times and jumps
obey generalizations of the usual Poisson and Gaussian pro-
cesses: for example, fractional time derivatives arise when
the jump probabilities are sampled from the Mittag-Leffler
distribution �3,4,10,11� �a generalization of the Poisson dis-
tribution in which the probability for a jump decays algebra-

ically with time for long times�. Alternatively, it can also be
understood within the context of the generalized Langevin
equation as the result of a memory function that depends
algebraically on time �12�. In either case, it is therefore pos-
sible to relate the mathematical formalism �the FFPE� to a
microscopic description �power-law-distributed waiting
times or algebraic memory function�. The purpose of this
paper is to describe a similar class of microscopic dynamics
for which the PME arises naturally as the corresponding
Fokker-Planck equation.

There have been several attempts to provide some dy-
namical context for the PME. Abe and Thurner �13� at-
tempted to generalize the classical derivation of Einstein by
introducing the concept of escort probabilities into the mas-
ter equation for a random walk. Aside from the ad hoc nature
of the generalization, the result is the PME plus an additional
term which is not well behaved in the long-time limit. Sev-
eral authors have described the relation of the PME to a
continuous time random walk. In particular, Curado and No-
bre �14� show that the PME arises from a continuous time
random walk in which the transition rates, which are con-
stants in the classical random walk, depend on some power
of the distribution. Borland �15� and Anteneodo and Tsallis
�16� discuss the fact that the PME corresponds to a Langevin
equation with multiplicative noise but, given the equivalence
of the Fokker-Planck and Langevin descriptions, this is just
another way of writing the same result. Lutsko and Boon
�17� show that an assumption of nonlinear response in an
ordinary fluid leads to the PME, but with no indication of the
origin of the nonlinear response. Another approach based on
generalizing the cumulant expansion of the intermediate
scattering function leads to a somewhat different generaliza-
tion of classical diffusion �18�.

Consider a discrete time random walk on a one-
dimensional lattice under the condition that the probability
that the walker makes a jump from one lattice site to another
depends on the concentration of walkers everywhere on the
lattice. In this way, we generalize and extend previous mod-
els in several ways. First, we allow for jumps of arbitrary
length and with asymmetric probabilities so that detailed bal-
ance is violated and an intrinsic drift is generated. Second,
we start with a discrete time model rather than the continu-
ous time random walk which, combined with the drift, leads
to additional terms in the Fokker-Planck equation. The con-*jlutsko@ulb.ac.be; URL: http://www.lutsko.com
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tinuous time random walk is a special limit of our formula-
tion. Third, we do not assume a priori power law nonlineari-
ties as has commonly been the case. We allow for a quite
general form of nonlinear dependence of the jump probabili-
ties on the local distributions and we show that the resulting
Fokker-Planck equation admits self-similar, i.e., scaling, so-
lutions only if the nonlinearities take the form of power laws.
Thus we derive the existence of power law nonlinearities
rather than impose them. Finally, we also consider the effect
of an external field. A preliminary discussion of these results
has recently appeared �19�.

In the next section, we start from the master equation and
use a multiscale expansion to derive the Fokker-Planck equa-
tion. The modifications necessary to take into account the
action of an external field are also discussed. In Sec. III, we
explore the properties of the generalized diffusion equation.
In particular, we show that self-similar solutions are possible
only under conditions that reduce our equation to the PME.
We also present numerical results which demonstrate the im-
portance of the nonstandard terms occurring in the general-
ized diffusion equation and showing, in particular, the effect
of breaking detailed balance. The last section gives our con-
clusions.

II. DERIVATION OF THE GENERALIZED
FOKKER-PLANCK EQUATION

A. The master equation

Consider a walker on a lattice whose sites are labeled by
a discrete index l. A classical random walk is characterized
by a set of probabilities �pj	 which give the likelihood for a
jump of j lattice sites �j�0 corresponds to jumps to the
right, j�0 to jumps to the left�. An individual walker is
characterized by the probability to be at site l at time step i,
fl�i�. Equivalently, one could imagine a population of inde-
pendent walkers which all start from the same site, in which
case fl�i� would be the concentration of walkers at site l at
time step i. If the walk is symmetric, p−j = pj, the walker
exhibits diffusive behavior whereas asymmetric probabilities
give rise to diffusion superposed on a systematic drift.

In the present case, we generalize this picture by consid-
ering that the jump probability is a function of the occupa-
tion probability �or the concentration of particles� on the lat-
tice. Consequently, the probability to make a jump of length
j from site l will depend on the concentration at site l at time
step i, fl�i�, and on the concentration at the end point of the
jump, fl+j�i�. It is convenient to introduce the more general
notation whereby the transition probability to jump from site
l to site k at time t is P�l→k ; t� so that the distribution obeys
the master equation

fl�i + 1� = fl�i� + 

k=−�

�

�fk�i�P�k → l;i� − fl�i�P�l → k;i�� ,

�2�

where the first term on the right is the increase in population
due to walkers jumping to site l from all other sites k,
whereas the second term is the loss due to walkers leaving

site l to go to site k. In the classical case, the jump probabili-
ties take values drawn from a prescribed distribution, i.e.,
P�k→ l ; t�= pl−k, the simplest case being p�k+1�−k= p�k−1�−k= 1

2 .
Here, we make the specific generalization that the probabili-
ties have the form

P�k → l;i� = pl−kF„fk�i�,fl�i�… �3�

for some, as yet unspecified, function F�x ,y�. Note that the
probabilities must satisfy the obvious normalization

1 = 

k

P�l → k;t� . �4�

This, together with the requirement that the probabilities be
bounded, 0� P�k→ l ; t��1, places restrictions on the form
of F�x ,y�.

B. Smoothing

The goal is to examine the distribution on length and time
scales that are large compared to the lattice spacing 	r and
time step 	t. On these scales, it is expected that the distribu-
tion can be approximated by a continuous function. To for-
malize this, a smoothed version of the distribution is defined
by the probability density

f�r,t� = 

l,i

G�r − l	r,t − i	t�fl�i� �5�

where the sum extends over all values of the indices and the
function G�r , t� is assumed to be localized near the point r
=0, t=0. For example, the smoothing function could be a
product of Gaussians,

G�r,t� =
1

2
��r�t

exp�−
r2

2�r

exp�−

t2

2�t

 . �6�

In general, the length and time scales associated with the
smoothing can be as small as those of the random walk
model. In the following, it makes no difference as long as
both are small compared to the scale of typical variations in
the distribution function. In general, we assume that, as in
this example, there are scales such as �r and �t that charac-
terize the range of the smoothing and henceforth that these
scales are similar to the lattice spacing and time step,

1 � 	r/��r, 	t/��t. �7�

It will be necessary to also define the inverse transforma-
tion. To that end, notice that

f�k	r, j	t� = 

l,i

G�k	r − l	r, j	t − i	t�fl�i� �8�

and assume that this relation is invertible so that

fl�i� = 

k,j

G−1�k	r − l	r, j	t − i	t�f�k	r, j	t� . �9�

Note that when attention is restricted to the value of the
smoothed function at lattice points, the relation between the
original values and the smoothed values is just a discrete
convolution which can be inverted using discrete Fourier
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transforms so long as the Fourier transform of the data and
the smoothing functions exist and that of the smoothing
function is nonzero �20�. This establishes the invertibility of
the smoothing for a large class of functions. However, here,
this expression will be developed in a Taylor expansion. As-
suming that the smoothing function and its inverse are even
functions of their arguments, as is natural, then

fl�i� = f�l	r,i	t�

k,j

G−1�k	r − l	r, j	t − i	t� +
1

2
�	r�2



�2f�l	r,i	t�

�r2 

k,j

�k − l�2G−1�k	r − l	r, j	t − i	t�

+
1

2
�	t�2�2f�l	r,i	t�

�t2 

k,j

�j − i�2G−1�k	r − l	r, j	t − i	t�

+ ¯ . �10�

It is easy to see that if G�k	r− l	r , j	t− i	t� is normalized,
then so is the inverse function. The sums then characterize
the width in space and time, respectively, of the inverse
smoothing functions, which will be of the same order of
magnitude as that of the actual smoothing functions. So we
have that

fl�i� = f�l	r,i	t� + �r�r
�2f�l	r,i	t�

�r2 + �t�t
�2f�l	r,i	t�

�t2 + ¯

�11�

for some dimensionless constants �r ,�t which are of order
unity. Note that this expansion makes sense, as does the
whole smoothing procedure, provided the gradients of the
distribution are small over the scales ��r ,��t.

C. Expansion of the master equation

In the limit of classical diffusion, when the transition
probabilities take values from a given distribution, one could
simply multiply the master equation by G�r− l	r , t− i	t� and
sum to get the exact master equation for the smoothed dis-
tribution,

f�r,t + 	t� = f�r,t� + 

m=−�

�

�f�r − k	r,t�pm − f�r,t�p−m� .

�12�

However, the nonlinearities of the generalized model do not
permit this. Instead, Eq. �11� is used to get

f�r,t + 	t� + �r�r
�2f�r,t + 	t�

�r2 + �t�t
�2f�r,t + 	t�

�t2 + ¯

= f�r,t� + �r�r
�2f�r,t�

�r2 + �t�t
�2f�r,t�

�t2 + ¯

+ 

m=−�

�

�f�r − m	r,t�F„f�r − m	r,t�, f�r,t�…pm − f�r,t�


F„f�r,t�, f�r − m	r,t�…p−m�

+ �r�r 

m=−�

� � �2f�r − m	r,t�
�r2 F„f�r − m	r,t�, f�r,t�…pm

−
�2f�r,t�

�r2 F„f�r,t�, f�r − m	r,t�…p−m
 + ¯ �13�

where we have explicitly written only one of several terms in
the sum proportional to �r �and none of the terms propor-
tional to �t�. The reason is that we will now further expand
the distribution so as to give a superficially local expression.
Then, it is found that the terms proportional to �r and �t
contribute only to third order in the gradients, so that we
have

	t
� f�r,t�

�t
+

1

2
�	t�2�2f�r,t�

�t2

= − 	r
� f�r,t�

�r 

m=−�

�

mpm� �xF�x,y�
�x

+
�xF�x,y�

�y
�

f

+
1

2
�	r�2�2f�r,t�

�r2 

m=−�

�

m2pm� �xF�x,y�
�x

−
�xF�x,y�

�y
�

f

+
1

2
�	r�2� � f�r,t�

�r

2



m=−�

�

m2pm� �2xF�x,y�
�x2

−
�2xF�x,y�

�y2 �
f

+ O��r
3/2 �3f

�r3 , . . .
 , �14�

where we have used the assumption that 	r���r to replace
	r by �r in the error estimate. A compact notation has also
been introduced whereby

� �xF�x,y�
�x

�
f

= � �xF�x,y�
�x

�
x=f�r,t�,y=f�r,t�

. �15�

D. Multiple time scales

We could simply truncate the expansion obtained so far
on the grounds that the gradients are small over the scale of
the smoothing �i.e., small over the scale of a few lattice
spacings� but this is unsatisfactory on both physical and
mathematical grounds. Physically, the resulting equation
does not reduce to the diffusion equation in the appropriate
limit of F�x ,y�=1. Mathematically, this results in a second-
order equation in time, whereas the exact master equation is
clearly first order in time: knowledge of the distribution at
time step i is sufficient to calculate it at all future time steps.
These problems are not unrelated: both are due to the fact
that changes in the distribution in time are driven by spatial
gradients so that in some sense derivatives in time and in
space are interchangeable. Ideally, we would like to say that
the first-order spatial gradients drive the first-order time de-
rivative, the second-order gradients second-order time de-
rivatives, etc. However, we cannot simply equate these dif-
ferent terms separately as there is only one distribution and it
can satisfy only one equation. The solution is to generalize
the distribution to have many different, but related, time de-
pendencies that can be satisfied at different length scales.
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This leads to the method of multiple time scales.
To separate the different length and time scales in the

problem, first define a length scale � over which the relative
variation of the distribution is of order 1,

1

f

� f

�r/�
� 1 or �

� ln f

�r
� 1. �16�

Then, a small parameter �=	r /� is defined which quantifies
the notion that the derivative of the distribution is small over
the length scale of the smoothing function �which we assume
is a few lattice spacings so that 	r���r�. A parameter � is
introduced by defining 	t=��, and dimensionless variables
z=r /� and s= t /� are used to write the master equation as

�
� f�z,s�

�s
+

1

2
�2�2f�z,s�

�s2

= − �
� f�z,s�

�z
J1� �xF�x,y�

�x
+

�xF�x,y�
�y

�
f

+
1

2
�2�2f�z,s�

�z2 J2� �xF�x,y�
�x

−
�xF�x,y�

�y
�

f

+
1

2
�2� � f�z,s�

�z

2

J2� �2xF�x,y�
�x2 −

�2xF�x,y�
�y2 �

f

+ O��∋� ,

�17�

where Jn=
mmnpm. Additional time scales are now intro-
duced by generalizing the distribution to a function of many
time variables f�z ,s�→ f�z ,s0 ,s1 , . . .� where the connection
between this generalized function and the actual distribution
is that f�z ,s�= f�z ,s ,�s ,�2s , . . .�. Thus, the time derivatives
must be replaced by

�

�s
=

�s0

�s

�

�s0
+

�s1

�s

�

�s1
+ ¯ =

�

�s0
+ �

�

�s1
+ ¯ . �18�

We can now demand that the terms cancel at each order in �
since this just defines the dependence of the distribution on
the various time scales. The first two orders in � give

� f

�s0
= −

� f

�z
J1� �xF�x,y�

�x
+

�xF�x,y�
�y

�
f

,

� f

�s1
+

1

2

�2f

�s0
2 =

1

2

�2f

�z2J2� �xF�x,y�
�x

−
�xF�x,y�

�y
�

f

+
1

2
� � f

�z

2

J2� �2xF�x,y�
�x2 −

�2xF�x,y�
�y2 �

f

.

�19�

Now it is clear that the first equation can be used to rewrite
the second derivative with respect to s0 in terms of spatial
gradients,

�2f

�s0
2 =

�

�s0
�−

� f

�z
J1� �xF�x,y�

�x
+

�xF�x,y�
�y

�
f



= J1
2 �

�z
� �xF�x,x�

�x
�

f

2� f

�z
, �20�

giving

� f

�s0
= −

� f

�z
J1� �xF�x,y�

�x
+

�xF�x,y�
�y

�
f

,

� f

�s1
=

1

2

�2f

�z2J2� �xF�x,y�
�x

−
�xF�x,y�

�y
�

f

+
1

2
� � f

�z

2

J2� �2xF�x,y�
�x2 −

�2xF�x,y�
�y2 �

f

−
1

2
J1

2 �

�z
� �xF�x,x�

�x
�

f

2� f

�z
. �21�

Summing gives the desired result,

� f

�s
= −

� f

�z
J1� �xF�x,y�

�x
+

�xF�x,y�
�y

�
f

+
1

2

�2f

�z2J2� �xF�x,y�
�x

−
�xF�x,y�

�y
�

f

+
1

2
� � f

�z

2

J2� �2xF�x,y�
�x2 −

�2xF�x,y�
�y2 �

f

−
1

2
J1

2 �

�z
� �xF�x,x�

�x



f

2� f

�z
+ O��2� . �22�

In terms of the original variables, this reads

�

�t
f�r,t� + C

�

�r
�xF�x,x�� f

= D̄
�

�r
� �xF�x,y�

�x
−

�xF�x,y�
�y

�
f

�

�r
f�r,t�

−
1

2
C2	t

�

�r
� �xF�x,x�

�x
�

f

2 �

�r
f�r,t� + O��3� , �23�

where

C =
	r

	t
J1,

D̄ =
1

2
�	r

	t

2

J2. �24�

Alternatively, the diffusion coefficient can be written in
terms of the second cumulant as

D =
1

2

�	r�2

	t
�J2 − J1

2� , �25�

and the equation rearranged to give
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� f

�t
+ C

�

�r
�xF�x,x�� f = D

�

�r
� �xF�x,y�

�x
−

�xF�x,y�
�y

�
f

� f

�r

+
1

2
C2	t

�

�r
� �xF�x,y�

�x
−

�xF�x,y�
�y

− � �xF�x,x�
�x

�2�
f

� f

�r
. �26�

Equations �23� and �26� give the generalized Fokker-Planck
equation and are the main result of this section.

E. Effect of an external field

If the walkers are subject to an external field V�r�, the
derivation given above must be further generalized. In sto-
chastic algorithms, such as the standard Metropolis Monte
Carlo algorithm, the goal is to generate the canonical distri-
bution �21�. In fact, similar reasoning also lies behind the
fluctuation-dissipation relation that is needed to specify the
autocorrelations of the noise in Langevin models. Here, we
can adopt the same approach and demand that the effect of
the field be to modify the jump probabilities so as to generate
some specified steady state distribution. Alternatively, one
can adopt the position often used in modeling nonequilib-
rium processes and assume that the effect of the field is the
same as in an equilibrium system—which would be equiva-
lent to an assumption of local equilibrium. Both possibilities
are explored here.

1. Detailed balance

The idea is that the stationary distribution is specified a
priori as some function of the external field. If the stationary
probability to find a walker at site k is 
k, then the master
equation demands that

0 = 

k=−�

�

�
kpl−kFkl�
k,
l� − 
lpk−lFlk�
l,
k�� , �27�

where the subscripts on the F functions indicate that these
now depend on position via the field. The usual condition of
detailed balance would be that forward and backward jumps
must balance,


kpl−kFkl�
k,
l� = 
lpk−lFlk�
l,
k� . �28�

However, this assumption is problematic since the elemen-
tary probabilities pl−k may make the forward and backward
directions asymmetrical—in the extreme case, backward
jumps might be forbidden altogether. This is simply a mani-
festation of the fact that asymmetric elementary probabilities
give rise to drift, and in the case of drift it makes no sense to
speak of the stationary distribution. So we can only attempt
to enforce detailed balance when the elementary probabilities
are symmetrical, in which case �28� reads


kFkl�
k,
l� = 
lFlk�
l,
k� . �29�

Then, making the usual separation of the jump probabilities
into the probability to generate a particular jump,
F�
l−m ,
l�, as before, and the probability to accept a jump,
Gl−m,l, the balance condition becomes


kF�
k,
l�Gkl = 
lF�
l,
k�Glk, �30�

which is solved, e.g., by the Metropolis ansatz

Gkl = min�1,

lF�
l,
k�

kF�
k,
l�


 . �31�

To proceed, we make the further assumption that the station-
ary distribution is a local function of the field, 
l=���Vl�
=�(�V�l	r�). It is shown in the Appendix that in this case
the generalized equation becomes

� f

�t
+

�

�r
�C − D��r�K„�V�r�…

��V�r�
�r


�xF�x,y�� f

=
�

�r
�D̄� �xF�x,y�

�x
−

�xF�x,y�
�y

�
f

−
1

2
C2	t� �xF�x,x�

�x
�

f

2
 � f

�r
, �32�

where

K�V� = � � ln xF�x,y�
�y

−
� ln xF�x,y�

�x
�

��V�

d

dV
��V�

�33�

and

D��r� =
�	r�2

	t



m=−�

�

m2pm��− mK„�V�r�…
�

�r
�V�r�
 .

�34�

If the elementary probabilities are symmetric, then D��r�
=D. In this case, the advection-diffusion equation can be
written explicitly as

� f

�t
+ D

�

�r
� �xF�x,y�� f

�xF�x,y���
� �xF�x,y�

�x
−

�xF�x,y�
�y

�
�

��

�r



= D
�

�r
� �xF�x,y�

�x
−

�xF�x,y�
�y

�
f

� f

�r
, �35�

where the fact that f =� is a stationary solution is obvious.

2. Local equilibrium and superstatistics

If, on the other hand, we make the local equilibrium as-
sumption that the acceptance probabilities are the same as in
an equilibrium system,

Gkl = min„1,exp�− ��V�l	r� − V�k	r��	… , �36�

then the results in the Appendix give the same form as Eq.
�32�, but with K�V�=−1.

The local equilibrium assumption can be relaxed by
using the superstatistics approach �22�, better suited for sys-
tems out of equilibrium where the Boltzmann distribution
exp�−��V�r��	 cannot be expected to hold. The acceptance
probabilities are then written as

Gkl = min„1,exp�− �̃�U�l	r� − U�k	r��	… , �37�

with
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exp�− �̃U�r�� = �
0

�

d�
f���
Z���

e−�V�r�, �38�

where f��� is a prescribed distribution of the intensive vari-
able � with the normalization Z���. We then obtain the gen-
eralized advection-diffusion equation �see the Appendix�

� f

�t
+ �C

�

�r
− D̃�r�

�

�r
�d�̃U�r�

dr

��xF�x,y�� f

=
�

�r
�D� �xF�x,y�

�x
−

�xF�x,y�
�y

�
f

−
1

2
C2	t� �xF�x,x�

�x
�

f

2
 � f

�r
, �39�

with

D̃�r� =
�	r�2

	t



m=−�

�

m2pm��m
d�̃U�r�

dr

 . �40�

III. PROPERTIES OF THE GENERALIZED DIFFUSION
EQUATION

A. The generalized equation as a conservation law

The generalized diffusion equation contains an explicit
velocity C. However, since it multiplies a nonlinear function
of the distribution, it is not a drift in the usual sense that
it can be eliminated by a Galilean transformation. Although
it arises from the same physical source as the drift in
classical diffusion—namely, the asymmetry of the jump
probabilities—it corresponds in the present case to a
position-dependent velocity. Of course, one could always
make a transformation to an arbitrary moving frame, say
with velocity C�, and this would introduce the usual term
C��rf into the equation.

The generalized Fokker-Planck equation can also be cast
in the usual form of a conservation law,

� f

�t
+

�

�r
J = 0, �41�

with flux

J = �C − D��r�K„�V�r�…
��V�r�

�r

�xF�x,y�� f

− �D̄� �xF�x,y�
�x

−
�xF�x,y�

�y
�

f

−
1

2
C2	t� �xF�x,x�

�x
�

f

2
 � f

�r
.

�42�

Indeed, one interpretation of the result is that it describes
ordinary diffusion with drift velocity C and diffusion con-
stant D that are functions of the distribution, i.e.,

� f

�t
+

�

�r
�C�r� − D��r�F�f , f�K„�V�r�…

��V�r�
�r


 f

=
�

�r
D�r�

� f

�r
, �43�

where

C = CF�x,y� ,

D = D̄� �xF�x,y�
�x

−
�xF�x,y�

�y
�

f

−
1

2
C2	t� �xF�x,x�

�x
�

f

2

.

�44�

This makes clear that in the special case F�x ,y�=1, classical
diffusion is recovered.

B. Scaling solutions

We now specialize to the case that there is no drift, C
=0, and no external field, and ask under what circumstances
a scaling solution of the form f�r , t�= t−�/2��r / t�/2� is pos-
sible; in other words, when does the general formulation de-
scribe diffusion? Without drift and without external force,
the generalized diffusion equation reduces to

� f

�t
= D̄

�

�r
�M�f�

� f

�r

 �45�

where we have introduced M�f�= � �xF�x,y�
�x − �xF�x,y�

�y � f. Defining
�=r / t�/2 and introducing the scaling ansatz gives

−
�

2
����� + �

d

d�
����
 = D̄t1−� d

d�
�M„t−�/2����…

d

d�
����
 .

�46�

It is only possible to eliminate the factors of the time if
M�f�=m0f�, for some constant m0, giving

−
�

2

d

d�
����� = m0D̄t1−�−��/2 d

d�
������

d

d�
����
 . �47�

So scaling works provided that

� =
2

� + 2
, �48�

and the equation for the scaling function is

m0D̄
d

d�
������

d

d�
����
 +

�

2

d

d�
����� = 0, �49�

or

m0D̄�����
d

d�
���� +

�

2
���x� = A �50�

for some constant A. In the case A=0, the particular solution
is easily found from d

d������=− ��

2m0D̄
�, and is given by
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���� = �B −
�

2�2 + ��m0D̄
�2
1/�

��B −
�

2�2 + ��m0D̄
�2
 .

�51�

The constant B is determined by normalization:

B = ���� + 2�

8m0D̄

�/�+2

B� 1

�
,
1

2
−2�/�+2

, �52�

where B�x ,y�=��x���y� /��x+y� is the Beta function. The
distribution can also be written as a q Gaussian by defining
�=1−q,

���� = B1/1−q�1 −
1 − q

2Bm0D̄�3 − q�
�2
1/1−q


��1 −
1 − q

2Bm0D̄�3 − q�
�2
 . �53�

Note that the scaling hypothesis demands that

M�f� � � �xF�x,y�
�x

−
�xF�x,y�

�y
�

f

= m0f�, �54�

and the fact that the function F is defined in terms of the
jump probabilities means that it must be bounded. From its
definition, we expect that

0 � xF�x,y� � 1 and 0 � yF�x,y� � 1, �55�

for all x ,y� �0,1�. If, for example, F�x ,y�=F�x�, then the
scaling hypothesis is: F�x��x�, so that the bounds given
above demand that

� � 0, 0 � � � 1, and q � 1. �56�

All of the preceding concerning the scaling behavior ap-
plies only to the case that the constant A is taken to be zero
in Eq. �50�. For values of A�0, no general solution of this
equation could be found. However, note that if ���� is ana-
lytic at �=0, then from Eq. �50�

lim
�→0

d

d�
���� =

A

m0D̄���0�
, �57�

so that any solution with A�0 is not symmetric about �=0.
Thus, we can say that the scaling behavior discussed here
applies to the general case of symmetric solutions.

IV. NUMERICAL TESTS

In order to test the validity of the generalized diffusion
equation, we have performed numerical simulations of the
underlying random walk model. Our simulations begin with
a population of N independent random walkers at position
r=0 at time t=0. At time step i, each walker makes a jump of
m lattice sites from its present position, say site l, with a
probability pmF(fl�i� , fl+m�i�) where the distribution fk�i� is
simply the fraction of walkers at site k at time step i. All of
the simulations discussed below were performed using a
population of size N=105.

The first simulation is for the case of no drift, elementary
probabilities pj =

1
5 with j� �−2,2�, and F�x ,y�=x1−q, for

which the theory gives

f�r,t� = t−1/3−q�q�r/t1/3−q� ,

�q��� = Bq
1/1−q�1 −

1 − q

2Bq�2 − q��3 − q�D̄
�2
1/1−q


��1 −
1 − q

2Bq�2 − q��3 − q�D̄
�2
 ,

Bq = � �1 − q��3 − q�

8�2 − q�D̄

1−q/3−q

B� 1

1 − q
,
1

2
−2−2q/3−q

. �58�

As stated above, only the range q�1 is permitted, and the
value q=1 corresponds to classical diffusion. Since the initial
condition and jump probabilities are symmetric, there is no
drift and the scaling solution applies. Figures 1–3 show the
analytic results, given by Eq. �58�, and the results of the
microscopic simulations for q=0.999 �essentially the classi-
cal case�, 0.5, and 0.0. These correspond to anomalous dif-
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FIG. 1. �Color online� Evolution of an initial 	-function distri-
bution for the case q=0.999 and equal elementary probabilities for
jumps up to length 2. The symbols are from Monte Carlo simulation
of the random walk and the solid lines are the analytic q Gaussian
solution �58� to the generalized diffusion equation.
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FIG. 2. �Color online� Same as Fig. 1, but for q=0.5.
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fusion with scaling exponent �=0.9995, 4
5 , and 2

3 , respec-
tively. In all cases, the agreement between the simulations
and the scaling solution is very good, even at the earliest
times.

In the second set of simulations, particles are subjected to
drift. In this case, the elementary probabilities are taken to be
pj =

j+3
15 for j� �−2,2�. Figures 4–6 show the evolution of the

distributions for the same values of q as for the no-drift case.
As mentioned above, it is then no longer possible to solve
the generalized diffusion equation analytically. So compari-
son is made to a numerical solution of Eq. �26� with
F�x ,y�=x1−q. The numerical solution was performed using
centered finite differences in the spatial variable and a
simple, first-order scheme in the time, with the lattice spac-
ing fixed at 	r and the time step equal to 0.001	t. For q
=0.999, the process is essentially that of the classical case of
advection-diffusion. For the smaller values of q however, the
distribution is very different, becoming increasingly asym-
metrical as time progresses. As q becomes smaller, and the
processes becomes more subdiffusive, the velocity of the
peak of the distribution also decreases. Even with these sig-
nificant qualitative changes for decreasing values of q, the

generalized diffusion equation is again seen to give very
good agreement with the Monte Carlo simulations.

One interesting question is whether the new terms appear-
ing in the generalized diffusion equation �23� and �26� play
any role, or whether they could be neglected, giving a result
closer to the porous media equation �7� which �with drift
term� reads

�

�t
f�r,t� + C

�

�t
f��r,t� = D

�2

�r2 f��r,t� . �59�

To investigate this, we repeated the solution of two modifi-
cations of the generalized diffusion equation. In the first
case, the “extra” terms are simply omitted from Eq. �23�
giving

� f

�t
+ C

�

�r
�xF�x,y�� f = D̄

�

�r
� �xF�x,y�

�x
−

�xF�x,y�
�y

�
f

� f

�r
.

�60�

One objection to this approximation is that it does not reduce
to the expected result in the limit of classical diffusion, since
then the extra term would combine with the diffusive term to

make the replacement D̄→D. This leads to the second modi-
fication considered here, namely, omitting the extra term
from Eq. �26�, which then reads
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FIG. 3. �Color online� Same as Fig. 1, but for q=0.0.
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FIG. 4. �Color online� The evolution of an initial 	-function
distribution for the case q=0.999 and pj = �j+3� /15 for j� �−2,2�.
Since the probabilities violate detailed balance, there is a nonzero
drift velocity C=2	r /3	t. The symbols are from Monte Carlo simu-
lation of the random walk and the solid lines are the numeric solu-
tion of the generalized diffusion equation �26�.
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FIG. 5. �Color online� Same as Fig. 4, but for q=0.5.
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FIG. 6. �Color online� Same as Fig. 4, but for q=0.0.
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� f

�t
+ C

�

�r
�xF�x,y�� f = D

�

�r
� �xF�x,y�

�x
−

�xF�x,y�
�y

�
f

� f

�r
.

�61�

For want of better terms, these will be referred to as modi-
fications I and II, respectively. Figures 7 and 8 show the
numerical solution of these equations compared to the simu-
lation data for the two cases q=0.999 and 0. For q=0.999,
the type II modification is a much better approximation to
the data than is the type I modification, as might be expected
since type II becomes exact for q=1. However, the results
for q=0 are exactly reversed: type I is a noticeably better
approximation than is type II. The conclusion is that the full
equation is necessary to provide a good description of the
system for all values of q.

V. CONCLUSIONS

We have shown that a simple modification of the classical
random walk gives rise to subdiffusive behavior. The re-
quired modification is that the probability to make a jump

from one lattice site to another depends on the occupation
probability of the walker on the lattice. Using a multiscale
expansion of the exact master equation, we derived a gener-
alized Fokker-Planck equation. In the limit of symmetric
probabilities to jump left and right, this equation gives rise to
diffusive behavior of the moments of the distribution, pro-
vided the dependence of the jump probabilities takes the
form of a power law. In this case, our result reduces to the
porous media equation. Unlike other approaches that begin
with a continuous time random walk, we specifically con-
sider a microscopic model in the hydrodynamic limit of large
length and time scales. This is responsible for the appearance
of a new term in the generalized diffusion equation which, as
comparison to simulations of the microscopic model shows,
is necessary to correctly describe the evolution of the distri-
bution.

Our generalized equation reduces to previous results in
the appropriate limits. Most simply, if the function F�x ,y�
=1 the Fokker-Planck equation becomes the classical
advective-diffusive equation. The continuous time random
walk results from the scaling

	t → �2	t, 	r → �	r, J1 → �J1, �62�

and the limit �→0. �Note that this limit is easily deduced
directly from the smoothed master equation without need for
the multiscale expansion.� With the further approximations
of �i� no drift �C=0� and �ii� hops of only one lattice site, our
result agrees with those of Curado and Nobre �14� and Nobre
et al. �23�.

We have shown that exact self-similar solutions of the
generalized diffusion equation �without drift� are possible
only if the jump probabilities scale as power laws. In this
case, the distribution turns out to be the so-called q Gaussian
often introduced in an ad hoc manner to describe anomalous
diffusion. The model presented here therefore gives one an-
swer to the question of what underlying dynamics could give
rise to the observed q Gaussian distributions: a dependence
of the jump probabilities on the local distribution �or, more
likely, local concentration� of walkers is sufficient. Note that
the dependence need not be an exact power law: it is enough
that the long-time limit of the diffusion equation admits scal-
ing, which in turn implies that the function F�x ,y� becomes
algebraic in x in the limit of very small or very large x,
depending on the various scaling exponents. One restriction
of the exact scaling result, however, is that our model is well
defined only if F�x ,y�=x� for ��0, which in turn implies
subdiffusive scaling of the moments. To describe superdiffu-
sion there are only two possibilities. Either one could con-
struct a function F�x ,y� that gives the proper normalization
of the jump probabilities and that gives superdiffusion in the
long-time limit or one could modify the basic description of
the jump probabilities, Eq. �3�, so as to introduce nonlinear-
ity in some other way.

The generalized diffusion equation �GDE� is in some
ways similar to the fractional Fokker-Planck equation: both
describe subdiffusion and both require power law probabili-
ties to give the subdiffusion �the GDE in the jump probabili-
ties, the FFPE in the waiting times�. It is natural to ask
whether, given some experimental data which show subdif-
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FIG. 7. �Color online� Simulation data for q=0.999 and the
predictions of the Fokker-Planck equation with the type I modifica-
tion. Type II is not shown as it gives virtually the same result as the
full Fokker-Planck equation, as shown in Fig. 4, and is in almost
perfect agreement with the data.
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FIG. 8. �Color online� Simulation data for q=0 together with the
predictions of the Fokker-Planck equation with the type I �full line�
and type II �broken line� modifications.
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fusion, there is any way to choose between the two descrip-
tions. On physical grounds, the idea of waiting times that are
distributed as a power law might be more appropriate, in
which case the FFPE should be preferred; if it makes more
sense to think in terms of an interaction between the walkers,
then the GDE might be more appropriate. Empirically, if the
distribution of walkers is measured, it might be possible to
choose a model based on the fact that the GDE predicts that
the distribution of walkers in a system showing subdiffusion
with no external forces should obey a q Gaussian distribu-
tion, whereas in the case of the FFPE there is also a scaling
solution, but the distribution is a stretched Gaussian �2�. In
fact, in two studies, one of subdiffusion induced by a random
walk on a Sierpinski gasket �24� and the other of superdiffu-
son induced by a raondom walk on a tree structure �25�, it
was shown that the FFPE and GDE results were sufficiently
different as to allow an empirical distinction to be made.

In the presence of either drift �i.e., nonsymmetric jump
probabilities� or an external field, the GDE is more complex
than the equivalent extension of the porous media equation.
This is true even when a power law dependence of the jump
probabilities is assumed since in this case the GDE becomes

� f

�t
+

�

�r
�C + �1 + ��D��r�

� ln �„�V�r�…
�r


 f1+�

=
�

�r
��1 + ��D̄f� −

1

2
�1 + ��2C2	tf2�
 � f

�r
, �63�

where

D��r� =
�	r�2

	t



m=−�

�

m2pm���1 + ��m
� ln �„�V�r�…

�r

 ,

�64�

or, with 1+�=�,

� f

�t
+

�

�r
�C + �D��r�

� ln �„�V�r�…
�r


 f�

=
�

�r
�D +

	t

2
C2�1 − �f�−1�
 �

�r
f�, �65�

to be compared with the PME �59�. With no field, the drift
does not generate a simple Galilean transformation of the
equation without drift, as is usually assumed to be the case
with the porous media equation, but instead generates new
nonlinearities in the GDE. Because the drift term has the
same number of powers of f but one fewer derivative, than
the right-hand side, no simple scaling solution is evident. In
the case of an external field but no drift, one has that D��r�
→ D̄, so that the gradient terms on the left- and right-hand
sides of the equation have the same numbers of powers of f
and of spatial gradients. A scaling solution would then be
possible, but only with a trivial external field. This superfi-
cial analysis suggests that exact scaling is possible in the
GDE only in the case of no field and no drift. It leaves open
the possibility of approximate scaling in the long-time limit,
not to mention the possibility that more complex assump-
tions for the dependence of the jump probabilities might give

completely different scaling properties. These questions are
the subject of ongoing research.
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APPENDIX: ROLE OF THE EXTERNAL FIELD

The master equation is

f�r,t + 	t� = f�r,t� + 

m=−�

�

pm�f�r − m	r,t�


F„f�r − m	r,t�, f�r,t�…Gr−m,r

− f�r,t�F„f�r,t�, f�r + m	r,t�…Gr,r+m� ,

�A1�

where

Gl−m,l =
�lF��l,�l−m�

�l−mF��l−m,�l�
��1 −

�lF��l,�l−m�
�l−mF��l−m,�l�



+ �� �lF��l,�l−m�

�l−mF��l−m,�l�
− 1
 �A2�

and

�l = �„V�l	r�… . �A3�

This can also be written as

Gl−m,l = 1 + � �lF��l,�l−m�
�l−mF��l−m,�l�

− 1
��1 −
�lF��l,�l−m�

�l−mF��l−m,�l�



= 1 + � �lF��l,�l−m�
�l−mF��l−m,�l�

− 1
�„�l−mF��l−m,�l�

− �lF��l,�l−m�… = 1 + Hl−m,l �A4�

where

Hl−m,l = �h�l	r,�l − m�	r�
h��l − m�	r,l	r�

− 1
��1 −
h�l	r,�l − m�	r�
h��l − m�	r,l	r�


with

h�x,y� = �„V�x�…F��„V�x�…,�„V�y�… . �A5�

The goal is to develop the expansion of Hl−m,l in terms of 	r
and to use this to derive the modified advection-diffusion
equation. In the appendix, we use an abbreviated notation
whereby �r= �

�r , etc.
First, note that for present purposes we need the expan-

sion of Hl−m,l up to order �	r�2 inclusive. For the step-
function part, we have
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��1 −
h�x,x − u�
h�x − u,x�
 = �„h�x − u,x� − h�x,x − u�…

= ��u�hy − hx� +
1

2
u2�hxx − hyy� + ¯


= �� u

�u�
�hy − hx� +

1

2
�u��hxx − hyy� + ¯
 .

�A6�

Now, we assume that �hy −hx� is of order 1, so that in some
formal sense we can expand to get

��1 −
h�x,x − u�
h�x − u,x�
 = �� u

�u�
�hy − hx�
 +

1

2
�u��hxx − hyy�


	� u

�u�
�hy − hx�
 + ¯ . �A7�

In general, the 	 function �and higher-order terms� only con-
tribute on a set of measure zero and can be neglected. �Fur-
thermore, we will explicitly show that the 	 function cannot
contribute until at least order �	r�3.� Expanding the coeffi-
cient of the step function gives

�h�x,x − u�
h�x − u,x�

− 1
 = u
hx − hy

h

+
1

2
u2�hyy

h
− 2

hxhy

h2 + 2
hx

2

h2 −
hxx

h

 + ¯ .

�A8�

Multiplying these two contributions, we see that the 	 func-
tion first appears at order u2, but in the form of x	�x�, which
is always zero; so, as stated above, it cannot contribute until
at least order u3, if at all. The result is

�h�x,x − u�
h�x − u,x�

− 1
��1 −
h�x,x − u�
h�x − u,x�



= �u�hx − hy

h

 +

1

2
u2�hyy

h
− 2

hxhy

h2 + 2
hx

2

h2 −
hxx

h

�


�„u�hy − hx�… + O�u3� , �A9�

and consequently

Hl−m,l = ��m	r��hx − hy

h

 +

1

2
�m	r�2�hyy

h
− 2

hxhy

h2

+ 2
hx

2

h2 −
hxx

h

��„m�hy − hx�… . �A10�

Similarly

Hl,l+m = ��l+mF��l+m,�l�
�lF��l,�l+m�

− 1
�„�lF��l,�l+m�

− �l+mF��l+m,�l�…

= �h��l + m�	r,l	r�
h�l	r,�l + m�	r�

− 1
��1 −
h��l + m�	r,l	r�
h�l	r,�l + m�	r�



= ��m	r�

hx − hy

h
+

1

2
�m	r�2�hxx

h
−

2hxhy

h2 +
2hy

2

h2

−
hyy

h

��„�m	r��hy − hx�… + O�m3� . �A11�

Substituting back into the master equation gives

f�r,t + 	t�

= f�r,t� + 

m=−�

�

pm�f�r − m	r,t�F„f�r − m	r,t�, f�r,t�…

− f�r,t�F„f�r,t�, f�r + m	r,t�…�

+ 

m=−�

�

pm�f�r − m	r,t�F„f�r − m	r,t�, f�r,t�…Hr−m,r�

− f�r,t�F„f�r,t�, f�r + m	r,t�…Hr,r+m. �A12�

The last term on right-hand side is

f�r,t�F„f�r,t�, f�r,t�… 

m=−�

�

pm�Hr−m,r − Hr,r+m� + 	r��rf� 

m=−�

�

mpm�−
dxF

dx
Hr−m,r −

dxF

dy
Hr,r+m
 + ¯

= f�r,t�F„f�r,t�, f�r,t�… 

m=−�

�
1

2
�m	r�2pm��hyy

h
− 2

hxhy

h2 + 2
hx

2

h2 −
hxx

h

 − �hxx

h
−

2hxhy

h2 +
2hy

2

h2 −
hyy

h

��„m�hy − hx�…

+ �	r�2��rf� 

m=−�

�

m2pm�−
dxF

dx
�hx − hy

h

 −

dxF

dy
�hx − hy

h

��„m�fy − fx�…

= �	r�2f�r,t�F„f�r,t�, f�r,t�…�hyy

h
−

hy
2

h2 +
hx

2

h2 −
hxx

h

 


m=−�

�

m2pm�„m�fy − fx�…
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+ �	r�2��rf��hx − hy

h

�−

dxF

dx
−

dxF

dy
� 


m=−�

�

m2pm�„m�fy − fx�…

= �	r�2� f�r,t�F„f�r,t�, f�r,t�…�d2 ln h

dy2 −
d2 ln h

dx2 
 + ��rf��dxF

dx
+

dxF

dy

�d ln h

dy
−

d ln h

dx

� 


m=−�

�

m2pm�„m�fy − fx�…

=
�

�r
� f�r,t�F„f�r,t�, f�r,t�…�d ln h

dy
−

d ln h

dx

��	r�2 


m=−�

�

m2pm�„m�fy − fx�… .

Since this term only contributes to the master equation at order �	r�2, it is easy to see that the complete Fokker-Planck equation
now reads

�t f + C�r�yF�y�� f = D��r��r� f�r,t�F„f�r,t�, f�r,t�…�d ln h

dy
−

d ln h

dx



x=y=r
� + D�r�F�y� − y

�F�y�
�y

�
f

�rf −
1

2
	tC2�r�F�y� − y

�F�y�
�y

+ � �yF�y�
�y


2�
f

�rf , �A13�

where

D��r� =
�	r�2

	t



m=−�

�

m2pm�„m�hy − hx�… . �A14�

Note that in the case of symmetric elementary probabilities

�	r�2

	t



m=−�

�

m2pm�„m�fy − fx�… =
�	r�2

	t



m�0

�

m2�pm�„m�fy − fx�… + p−m�„− m�hy − hx�…�

=
�	r�2

	t



m�0

�

m2pm��„m�fy − fx�… + �„− m�hy − hx�…�

=
�	r�2

	t



m�0

�

m2pm =
1

2

�	r�2

	t



m=−�

�

m2pm = D̄ . �A15�

The final form of the advection-diffusion equation can be clarified. Writing it as

�t f + C�r„yF�y�… f = D��r�
�

�r
� fF�f , f�

h�r,r� � �h

�y
−

�h

�x



x=y=r
� + D�r�F�y� − y

�F�y�
�y

�
f

�rf −
1

2
	tC2�r�F�y� − y

�F�y�
�y

+ � �yF�y�
�y


2�
f

�rf , �A16�

and noting that

�

�x
h�x,y� =

�

�x
�„V�x�…F��„V�x�…,�„V�y�…� =

��

�x
� �xF�x,y�

�x
�

�

, �A17�

gives

�t f + C�r�yF�y�� f = D��r�
�

�r
� fF�f , f�

�F��,��� �xF�x,y�
�y

−
�xF�x,y�

�x
�

�

�r�
 + �r�D�F�y� − y
�F�y�

�y
�

f

−
	t

2
C2�r�F�y� − y

�F�y�
�y

+ � �yF�y�
�y


2�
f
��rf . �A18�

The local equilibrium result can also be easily deduced. It corresponds to taking

h�x,y� = exp�− �V�x��, i.e.
�

�x
h�x,y� = − �

�V�x�
�x

exp�− �V�x�� . �A19�

Noting that the derivative of D��r� produces a term of the form x	�x� that vanishes, D��r� can be taken under the derivative
�r in �A18�, and in the local equilibrium case
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D��r�
�

�r
��

�V�r�
�r

fF�f , f�
 =
�

�r
�D��r��

�V�r�
�r

fF�f , f�
 . �A20�

The resulting generalized Fokker-Planck equation reads

�t f + �r�C�yF�y�� f − D��r���
�V�r�

�r
fF�f , f�
� = + �r�D�F�y� − y

�F�y�
�y

�
f

−
	t

2
C2�F�y� − y

�F�y�
�y

+ � �yF�y�
�y


2�
f

�rf .

�A21�
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